## **Linear Equations**

## **Key Definitions**

- **Equation:** An equation is a statement that sets two expressions equal to one another. **Examples:** x + 7 = 11  $x^2 = 9$  7 - 3x = 2 - 3x 4x + 7 = x + 2 + 3x + 5
- **Solution Set:** To solve an equation means to find all values of *x* that make the equation true (both sides must be equal when the solution is plugged in). We call the list of these values for *x* the solution set.

**Example:** The equation 2x + 3 = 7 has the solution x = 2. In other words, the solution set of this equation is  $\{2\}$ .

- Linear Equation: A linear equation is an equation where the highest power of x is one.
- **<u>Rational Equation</u>**: A rational equation is an equation that contains a rational expression.

## **Solving Linear Equations**

- <u>Steps:</u>
  - 1. Eliminate any parentheses.
  - 2. Combine like terms on each side of the equation.
  - 3. Isolate *x* on one side of the equation by using opposite operations to move terms to the other side of the equation (i.e. if a term is being subtracted on one side, you must add that term to both sides to move it to the other side).

**Example:** Solve the equation 5x - (7x - 4) - 2 = 5 - (3x + 2)

```
5x - 7x + 4 - 2 = 5 - 3x - 2
-2x + 2 = 3 - 3x
-2x + 3x + 2 = 3 - 3x + 3x
x + 2 = 3
x + 2 - 2 = 3 - 2
x = 1
```

## **Solving Rational Equations**

- Steps:
  - 1. State the excluded values (values that make any denominator equal to 0).
  - 2. Eliminate fractions by multiplying every term on both sides by the Least Common Denominator.
  - 3. The equation is now linear and can be solved as described in the previous section.

**Example:** Solve the equation  $\frac{2}{a} + \frac{3}{7} = \frac{12}{7a} - \frac{1}{3}$ 

$$\frac{2}{a} + \frac{3}{7} = \frac{12}{7a} - \frac{1}{3} \quad x \neq 0$$

$$21a \cdot \frac{2}{a} + 21a \cdot \frac{3}{7} = 21a \cdot \frac{12}{7a} - 21a \cdot \frac{1}{3}$$

$$21(2) + 3a(3) = 3(12) - 7a(1)$$

$$42 + 9a = 36 - 7a$$

$$42 + 9a + 7a = 36 - 7a + 7a$$

$$42 + 16a = 36$$

$$42 - 42 + 16a = 36 - 42$$

$$16a = -6$$

$$\frac{1}{16}(16a) = \frac{1}{16}(-6)$$

$$a = -\frac{3}{8}$$
Example: Solve the equation 
$$\frac{2}{2x - 5} = \frac{-1}{x + 3}$$

$$x \neq -3, x \neq \frac{5}{2}$$

$$\frac{2}{2x - 5}(2x - 5)(x + 3) = \frac{-1}{x + 3}(2x - 5)(x + 3)$$

$$2(x + 3) = (-1)(2x - 5)$$

$$2x + 6 = -2x + 5$$

$$2x + 2x + 6 = -2x + 2x + 5$$

$$4x + 6 - 6 = 5 - 6$$

$$4x = -1$$

$$x = -\frac{1}{4}$$

# Applications Involving Linear Equations

## **Solving Word Problems**

#### • <u>Steps</u>:

- $\circ$   $\;$  Read the problem and identify what you are being asked to find.
- o Reread the problem and make notes of quantities and important information
- Assign a variable to the unknown quantity (if there are two unknowns, assign the variable to the smaller of the two)
- o Set up an equation
- Solve the equation
- Ask whether the solution makes sense. If possible, use estimation.

**Example:** Two friends decide to walk to the store, then back to their apartment. Onesixth of their time was spent walking to the store. On the way, they stopped at a florist shop for 5 minutes. They spent one-third of the time at the store, and met another friend who drove them back to their apartment in two minutes. How many minutes did they spend on this trip?

#### Step 1: What are we being asked to find?

The number of minutes spent on the trip

#### Step 2: Make notes

- $\frac{1}{6}$  of trip was walking to store
- 5 minutes at the florist shop
- $\frac{1}{2}$  of trip was at the store
- 2 minutes driving to apartment

#### Step 3: Assign a variable

Length of trip in minutes = x

#### Step 4: Set up an equation

The length of the trip is the sum of the times spent walking, at the florist shop, at the store, and driving.

Time walking + Time @ florist + Time @ store + Time driving = Total time of trip

$$\frac{1}{6}x + 5 + \frac{1}{3}x + 2 = x$$

#### Step 5: Solve the equation

$$\frac{1}{6}x + 5 + \frac{1}{3}x + 2 = x \rightarrow 5 + 2 = x - \frac{1}{6}x - \frac{1}{3}x \rightarrow 7 = x\left(1 - \frac{1}{6} - \frac{1}{3}\right) \rightarrow 7 = x\left(\frac{6-1-2}{6}\right) \rightarrow 7 = \frac{1}{2}x \rightarrow 2 \cdot 7 = x \rightarrow x = 14$$

#### Step 6: Does the answer make sense?

In step 5, we found that x = 14. We plug this into the equation we created to check the solution.

$$\frac{1}{6}(14) + 5 + \frac{1}{3}(14) + 2 = \frac{14}{6} + 5 + \frac{14}{3} + 2 = \frac{14}{6} + \frac{30}{6} + \frac{28}{6} + \frac{12}{6} = \frac{84}{6} = 14$$

## **Geometric Formulas**

| Shape     | Perimeter            | Area                |
|-----------|----------------------|---------------------|
| Rectangle |                      |                     |
| w         | P = 2l + 2w          | $A = l \cdot w$     |
|           | l = length           |                     |
| l         | w = width            |                     |
| Circle    |                      |                     |
|           | $C = 2\pi r$         | $A = \pi r^2$       |
| •r)       | r = radius           |                     |
| Triangle  |                      |                     |
|           | P = a + b + c        | $A = \frac{1}{2}bh$ |
|           | a = side 1           |                     |
|           | c = side 2           |                     |
|           | b = base of triangle |                     |
|           | h = height           |                     |

**Example:** Find the perimeter of a triangle if one side is 11 cm, another side is  $\frac{3}{10}$  of the perimeter, and the third side is  $\frac{1}{3}$  of the perimeter.

#### Step 1: What are we being asked to find?

The perimeter of the triangle.

#### Step 2: Make notes

- one side is 11 cm long
- another side is  $\frac{3}{10}$  of the perimeter
- the third side is  $\frac{1}{3}$  of the perimeter

#### Step 3: Assign a variable

P = perimeter

#### Step 4: Set up an equation

$$P = a + b + c = \frac{3}{10}P + 11 + \frac{1}{3}P$$

#### Step 5: Solve the equation

$$P = \frac{3}{10}P + 11 + \frac{1}{3}P \rightarrow P - \frac{3}{10}P - \frac{1}{3}P = 11 \rightarrow P\left(1 - \frac{3}{10} - \frac{1}{3}\right) = 11 \rightarrow P\left(\frac{30 - 9 - 10}{30}\right) = 11 \rightarrow \frac{11}{30}P = 11 \rightarrow \frac{20}{44} \cdot \frac{44}{30}P = 41 \cdot \frac{30}{44} \rightarrow P = 30$$

Step 6: Does the answer make sense?

$$a = \frac{3}{10} \cdot 30 = 9 \qquad b = 11 \qquad c = \frac{1}{3} \cdot 30 = 10$$
$$P = a + b + c = 9 + 11 + 10 = 30 \checkmark$$

#### Interest

- **<u>Principal</u>**: The principal is the total amount borrowed.
- <u>Simple Interest</u>: If a principal of P dollars is borrowed for a period of t years at annual interest rate r, the interest I is I = Prt.

**Example:** A college student on summer vacation was able to make \$5000 by working a full-time job every summer. He invested half the money in a mutual fund and half the money in a stock that yielded four times as much interest as the mutual fund. After a year he earned \$250 in interest. What were the interest rates of the mutual fund and stock?

#### Step 1: What are we being asked to find?

The interest rates of the mutual fund and stock.

#### Step 2: Make notes and assign variables.

- ·  $I_1$  = the interest of the mutual fund
- ·  $I_2 = 4I_1 = the interest of the stock$
- $\cdot t = 1$  year
- $P_1 = $2500$  because half the money went into the mutual fund
- $P_2 = $2500$  because half the money went into a stock

#### Step 3: Set up equations.

$$I_1 + I_2 = $250$$
  $I_1 = P_1 r_1 t$   $I_2 = P_2 r_2 t$ 



Step 4: Solve the equations.

$$I_1 + I_2 = I_1 + 4I_1 = 5I_1 = 250 \rightarrow I_1 = \frac{250}{5} = 50$$
$$I_2 = 4I_1 = 4 \cdot 50 = 200$$
$$I_1 = P_1 r_1 t \rightarrow 50 = 2500(r_1)(1) \rightarrow r_1 = \frac{50}{2500} = .02 = 2\%$$
$$I_2 = P_2 r_2 t \rightarrow 200 = 2500(r_2)(1) \rightarrow r_2 = \frac{200}{2500} = .08 = 8\%$$

Step 5: Does the solution make sense?

$$I_1 = 2500(.02)(1) = 50$$
  
 $I_2 = 2500(.08)(1) = 200$ 

The interest from the stock is \$200 which is four times the interest of \$50 from the mutual fund